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Application of the quantum spin glass theory to image restoration
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Quantum fluctuation is introduced into the Markov random-field model for image restoration in the context
of a Bayesian approach. We investigate the dependence of the quantum fluctuation on the quality of a black
and white image restoration by making use of statistical mechanics. We find that the maximum posterior
marginal (MPM) estimate based on the quantum fluctuation gives a fine restoration in comparison with the
maximuma posterioriestimate or the thermal fluctuation based MPM estimate.
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[. INTRODUCTION detail. We also introduce the criterion of the restoration, that
is, the overlap between the original image and the result of
Recently, the problems of information science have beeithe restoration. In Sec. lll, we introduce the infinite range
investigated from a statistical mechanical point of view. Im-model in order to obtain analytical results for the perfor-
age restoration is one of the most suitable subjects for thi§'ance of the restoration, and calculate the overlap explicitly.
approach. In the standard approach to image restoration, df Sec. IV, we show that quantum Monte Carlo simulations
estimate of the original image is given by maximiziag in two dimensions support our analytical results. In Sec. V,
posteriori probability distribution(the MAP estimatg[1]. In ~ We introduce an iterative algorithm which is derived by the
the context of statistical mechanics, this approach corremean-field approximation and apply this algorithm to image
Sponds to f|nd|ng the ground_state Configuration Of the effec[estoration for standard piCtureS. Section VI is devoted to
tive Hamiltonian for some Spin System under random ﬁe|dsdiSCUSSi0n Of a.” I’esu|tS we Obtain. In th|S SeCtion, we a|SO
On the other hand, it is possible to construct another strategjention the inequality that gives the upper bound of the
to infer the original image using the thermal equilibrium Overlap.
state of the Hamiltonian. From the Bayesian statistical point
of view, the finite temperature restoratioroincides with Il. ESSENTIAL IDEA AND FORMULATION
maximizing a posterior marginal distributiqthe MPM es- . ,
timate [2,3) and by using this strategy the error for each Let us suppose that the original image is represented by a

pixel may become smaller than that of the MAP estimate. A€onfiguration of Ising spingé}={¢&|&==1;i=1,... N}
we use the average of each pixebin) over the Boltzmann- with probability P¢({£}). These images are sent through the

Gibbs distribution at a specific temperature, thermal fluctual'©iSy channel in the form of the sequeri¢g. We regard the
tion should play an important role in the MPM estimate. Output of the sequendg} through the noisy channel gs}.
Then the temperature controls the shape of the distributiof "€ output probability for the case of a binary symmetric
and, if we choose the temperature appropriately, samplinghannel(BSC) is specified by
from the distribution generates the important configurations
for a good restoration. In addition to this hill-climbing B 1
mechanism by the thermal fluctuation, we may use another Poul{7H{€1) = sexA B2 mE|. ()

; ; (2 coshB,) '
type of fluctuation, namely, the quantum fluctuation that

leads to quantum tunneling between states. If we use sanye understand the relevance of this expression for the BSC;
pling from the Boltzmann-Gibbs distribution based on quan-gt s suppose that each pixglchanges its sign with prob-

tum fluctuation, it may be possible to obtain much moregpjjity b and remains with % p, during the transmission,
effective configurations for a good restoration. The idea ofy4t is

the Markov random-field model using quantum fluctuation

was recently proposed by Tanaka and Horiguehj how- e Br

ever, they investigated the quantum fluctuation in the context P(ri=—§&l|&)=p,=5——> (2
of optimization(the MAP estimate by quantum fluctuatijon 2 coshg,

and they used the ground state as the estimate of the original

image. We would like to stress that we use a distribution P(r=&l&)=1—p.= ’ &)
based on the quantum fluctuation itself and the expectation b 7 2coshg,’

value is used to infer the original image. It is a highly non-

trivial problem to investigate whether the MPM estimate We easily see that there is a simple relation between flip

based on quantum fluctuation is better than the MAP estiprobability p, and inverse temperatur@,. as exp(3,)

mate or the thermal fluctuation based MPM estimate. This is=(1—p,)/p,. This is the reason why we refer to this type of

the essential concept of this paper. noise asbinary symmetricchannel. Using the assumption
This paper is organized as follows. In Sec. I, we explainthat each pixel¢; in the original image{¢} is corrupted

our model system and the essential idea of our method imdependently (so-called memory-less channelnamely,
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P{r{&)=1I,P(7]&), we obtain Eq.(1). This BSC is On the other hand, in the framework of the MPM esti-
simply extended to the following Gaussian chan(@®&C) mate, we maximize the following posterior marginal prob-
ability

1 1
Poul{TH{EH = —eXp< - 2 (1= 7&)? ],
(2 22 ) S (o) Pulloh
P(ail{rh)="— .0
where 7 is a standard deviation of observahleorrupted > PH7H{o)Pm({a})
pixel) 7; from scaled original pixelyé; . 7
Then the posterior probabilit({c}|{r}), which is the

probability that the source sequencdig provided that the As we treat the case of black or white image, the estimate of
output is{7}, leads to theith pixel should be given by

oy PPl . “on

; PEH{oHPu{a})

21 oiP(oil{r})

g==

2 oiP({7{ohPu({o})

by the Bayes theorem. As we treat a black or white image =sg
and the BSC(1), a likelihood P({7}|{£}) is appropriately
written by 2 P{r{ohPm({a})
=sgn(oinp,); (11)
P({T}I{f})~e><p(h2i Tio'i)- (6)

where(- - '>hﬁm means the average over the posterior prob-

Pn({o}) appearing in the Bayesian formuld) is a model of  ability Eq. (8). Consequently, our problem is reduced to one

the prior distributionP¢({£}), and we usually use the type of statistical mechanics that is described by the effective
Hamiltonian Eq.(9). As the Hamiltonian Eq(9) has many
local minima due to the quenched disordlef, in general, it

, @ s quite difficult to obtain the thermal equilibrium state that

contributes to good restoration without being trapped in a

local minimum for a long time. In order to overcome this

difficulty, we add thequantum transverse field]

Pn({o})~ eXF( Bm% gi0j

whereX (- - -) means the sum with respect to the nearest
neighboring pixels angB,, controls the smoothness of the
picture according to our assumption. Substituting ES.
and (22) into Eqg. (8), we obtain the posterior probability

- =h
P({o}[{7}) explicitly; r2 ol=t (12
eXp< ﬂmz oo+ hz T gi) to the effective AHamiItoniarﬁQ) as aquantum fluctuationin
P({a}|{r) = i ' . (8 this expressiong} means thex component of the Pauli ma-
trix andI” controls the width of the quantum fluctuation. The
> exp By gioj+h> Tio; Ay N )
- M i term I'o{ can be understood intuitively as thtanneling

] ~ probability between the eigenstates of the operaixf)r(z
In the framework of the MAP estimate, we regard a Conf'gu'component of the Pauli matixiamely,|o?= +1). The tun-
’ I — .

ration {o} that maximizes the posterior probability . jing orobability between the statés?=+1) leads to
P({a}|{7}) as an estimate of the original imagé&}. Obvi- Z_g pl rox Zy_ DIZ—T2. A il | B h> 12
ously, this estimatés} corresponds to the ground state of |(of=+1|Toflof=—1)]"=T". As a result, the tern(12)

the following effective Hamiltoniarithe random-field Ising 9enerates a superposition of the stites=+1) (black and
mode): |of=—1) (white). Using thisfuzzyrepresentation for each

pixel, we may construct an algorithm that is robust for the
choice of the hyperparameters, especially for the edge parts
Hetr=—Bmy oioj—h2 707 (9)  of a given picture.
I ' Our problem is now reduced to one of quantum statistical

. - .. mechanics for the effective Hamiltonian
Therefore, in the limit of3,,/h— o0, we expect that the origi-

nal image should be a completely black or completely white

picture, whereas in the limit oB,,/h—0, we assume that o= —h 2 ST X =T+ F

the original image should be identical to the observdble Hest Z i Bm(i2j> 719 Z 7i=Hot T,
itself. (13
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where we defined{;=H.4— H,. Our main goal is to calcu- €an be treated with the single form
late the local magnetizatiob(}iz)h,,;myr of the system de-
scribed by the above Hamiltonian, that is to say, Pout({JH{T}):([[) Fr(Jij)<H> Fi(7ij)
ij ij
Tr, o exp( — Heg)
Tr, exp( — Her)

<(7iz>h,ﬁm,r5

(14 Xexﬁ(ﬁr;) Jij§i§j+,872_ mi&| (19
i i

and we regard the quantity sga(), g,,.I) @s an estimate of with
the original pixel¢; . Therefore, the averaged performance of

hod i d by th Migh, Bm, I = 183 — y
our method is measured by the overlsigh,8,,,1") Fe(3i) 2coshﬁr{5(‘]” 1)+8(3;+ 1)},
M(h,Bm.T)
- 1
=T Ps{€DPoul{TH{EH & sg(ain g, 1) Fu(7i)) =3 gosng, (O~ D aln+ 1 (20)
(15

for the BSC and
Thus, our main interests are summarized as folldwds it

possible for us to use the quantum fluctuation in place of the 1 1 5
thermal one7ii) Does there exist a specific choicelofthat Fe(Jij)= ZWJzexp< N ﬁ(‘]ii +J0) |
gives optimal image restoration?
Before we calculate the overlafi5), we may add the 1
parity check termwhich was recently introduced by Nishi- Fo(r)= zexp( - _Z(Ti2+ 7.(2))>, (21)
mori and Wong[6], to the effective Hamiltoniar{9). This N2mT 27

parity check term is represented AsS iy Jijoto?, and we

— 2 _ 2
rewrite A, as for the GC, and we seB;=J,/J° and B,= 7o/ 7°.

As the original image, we use the ferromagnetic snapshot
from the distribution

Ho=— s, 35707~ By ofof—n2 7of, (16 .

B
P({eh=775 )exr{ﬁ 2 fig,-), (22)
whereJ;; is the noisy version of the product of two arbitrary S g
original pixels §;§; and the output of this quantity through

the noisy channel is given by where Z;(- - -) means the sum over all possible combina-

tions of (i,j) and we divided the argument of the exponential
1 in Eqg. (22) by N to take a proper thermodynamic limit as the
Pout({J}Hf}):—eXP( B2, Jijgigj) (177  Hamiltonian should be of ordeN. For the same reason,
(2 coshg,)\e (D we should rescale the terms appearing in H43

as BJE<,J>J,J&IZ(AJ-JZ—>(,BJ/N)E,JJ”¢A7,Z&JZ and ﬁmEm)a',zfrlz

—(BmIN)Zijofot when we treat the infinite range model.
) It must be noted that{, and 7, do not commute with

for the BSC and

each other and we use the Trotter decomposit&in

SR E—— exp(—iE (35~ Jobity)?
% C(V2md)Ne 202 fp T T
(18) Z= lim Tr, (e FMo/Pe FH1/P\P (23
P—o

for the GC, respectivelyNg is the number of the terms ap-
pearing in the sum in Eq17) or Eq.(18). Thus the effective

Hamiltonian Hes=Ho+ M, describes the thermodynamics
of a quantum spin glasgbs,7] under random fields.

In the next section, we introduce a rather artificial model,
namely, the infinite range model, in which spins in the sys-

N
tem (13) are fully connected. |{U§}>:£[1 ®lod) (k=1,...P) (24)

to calculate the partition function explicitly. In this formula,

‘Ho and’H, are eigenvalues of the operatd](@ andﬂl with
respect to the eigenvector

IIl. THE INFINITE RANGE MODEL .
with

In this section, we calculate the overl&p5) explicitly
using the infinite range version of the effective Hamiltonian 0%l oty =l 0% (25
(13). We use the GC for the analysis of the infinite range
model in this section and the BSC for the quantum MonteP means the Trotter number and we distinguish the different
Carlo simulations in Sec. IV. However, these two channelsTrotter slices by the indicel
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Now we can calculate the partition function for the quan-we can obtain the overlap as a function of the macroscopic
tum spin systen{16) in terms of the corresponding classical parametersg,, and I' by making use of the saddle-point

spin system whose dimension increases by 1. Using the Trofethod. The brackét: -
ter formula(the path-integral formujaand well-known rep-

lica method[9], namely,

[In 2]= Iim[an]]_l,

n—oe

(26)

[ & ]=mo=tanK Bomp),

. Tr, efsMot
[(UiK>h,Bm,r]:

[&i{aikng, r1=t

Tr, efsMot

"2 cosliBsmg) J -

s Tr, PsMoé
[{(oik)In g, r]1=Q=

Treefsmot (=
[<UiaKUi‘|X_>h,ﬁm,r]

where(- -

Gaussian integral measuBu=du e‘”2’2/\/27r. In order to

obtain the above saddle-point equations, we used the replica

symmetric and the static approximations, that is,

te=t, (32
S, (KL)=S(K#L), 1(K=L), (33
Q.p=Q. (34

We also defined the functionB, y, andQ) as

d=u(7h)?+Q(IB;)?+IBwS—Q+ (roh+JoBst) €

+ Bmm, (39
y=JD%+1?, (36)
szx D w coshy. (37)

"2 coshiBsmg) J —=

2 coshiBsmg) J -

_c_ N 2,2 2~
S 2 cosli Bamg) _wDuQ [f_wadJy coshy+Ff

'>hﬁm’F means the average by the posterior prob-
ability using the same method as Ef4). Du or Dy means

-] denotes the average over the dis-

tribution Ps({£}) Pou{J}.{ 7H{&}).
The standard replica calculations and saddle-point method
lead to the following coupled equations:

(27)
Du Qflf Do ®y lsinhy, (28)
Du Qflf Dw édy !sinhy; (29

o o0 2
)f Du{ﬂ‘lf Dw ®y~!sinhy (30)
Dwy 3sinhy/|, (31)

Tr, £ePsMot J' 5 j 5
Zcostwsmo u W

X sgriuy(7h)2+Q(JB;)?
+ (moh+JoBjt) E+ Brym

+IBwWVS—QJ,

[ sgr{ofi)n,p, r)1=M

(39

where the above overlap! depends orl” throughm [Eq.
(28)].

We first consider the case @;=0, that is to say, the
conventional image restoration. We choose a snapshot from
the distribution(22) at source temperatufe;=0.9. Accord-
ing to Nishimori and Wond6], we fix the ratioh/g,, and
adjust B,,(=1/T,,) as a parameter for simulated annealing
[10] and controll’ as a quantum fluctuation. If we sét
=0, the lines ofM(T,,,['=0) should be identical to the
results obtained by théhermal MPM estimate[6]. On the
other hand, if we choosg,,=0 andI’=0, the resultant line
M(T,=0[I) represents the performance of tlg@antum
MAP estimate. We should draw attention to the fact that the
quantum fluctuation vanishes Bt=0. In practical applica-
tions of the quantum annealing11] based on quantum
Monte Carlo simulations, we should reducdrom I'>0 to

Then the overlap, which is a measure of retrieval quality, i"=0 during Monte Carlo updates. However, the resultant

calculated explicitly as

performance obtained here is calculated analytically pro
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FIG. 1. The overlapM as a function ofT ,, for several values of F
I'. We set the system parameters Bs=0.9, 7=7=1.0, and _
h/B,=0.9=B./Bs. For =0, the optimal temperaturg,, coin- FIG. 2. The overlagM as a function of" for several values of

cides with the source temperatuFg=0.9. As the quantum fluctua- Tm- We set the system parameters Bs=0.9, 7o=7=1.0, and
tion T increases, the optimal temperature is shifted to the low/Bm=0.9=p8./Bs. The overlap aff,=0 andI'=0 corresponds

temperature region. However, the maximum value of the overlag© the result obtained by quantum annealing. The quantum MPM
does not change. estimate works effectively in the low-temperature region and the

results are robust for the choice Bf

vided that the system reaches its equilibrium state. There- _
fore, we can regard the resiM(T,,=0,'=0) as a perfor- As we already mentioned, the overlap &,=0 and
mance wher is decreased slowly enough. I'=0 corresponds to the result that is obtained by quan-

In Fig. 1, we set the ratich/B,, to its optimal value tum annealing[11], that is to say, the quantum MAP
B.1B<=0.9 and plot the overlaM(T,,,I') for the cases of estimate. We see that the result of the quantum MPM esti-
I'=0, 0.5, and 1.0. Obviously, for the case Bf=0, the mate is slightly better than that of the quantum MAP
maximum is obtained at a specific temperatig=0.9  estimate.

(=T, [6]. However, if we add a finite quantum fluctuation, ~ We next show the effect of the parity check term. In Fig.
the optimal temperaturg,, is shifted to the low-temperature 4, we sefl,=T;=0.9, h=1.0, andJ,=J=1.0 and plot the
region. overlap as a function oB; for several values of . We see

In Fig. 2, we plot M(T,,,I') for the cases ofT,  thatthe performance of the restoration is improved by intro-
=0,0.1,0.9 with the fixed optimal ratio/ 8,,=0.9. This fig-  ducing the parity check term, which has much information
ure shows that if we set the parametierg,,, to their optimal  about the local structure of the original image.
value in the thermal MPM estimate, the quantum fluctuation In the next section, we check the usefulness of this
added to the system destroys the recovered injage the method in terms of quantum Monte Carlo simulation.
linesM(T,,,I') for the case off,,=0.9]. Therefore, we may
say that it is impossible to choose all parameters3,,, and
I' so as to obtain an overlqp that is larger thih,., IV. QUANTUM MONTE CARLO SIMULATION
=M(T,,=0.9I'=0). This fact is also shown by a three-
dimensional plotM(T,,,I") in Fig. 3.

Although, we found that a finit€" does not give the ab-
solute maximum of the overlap, tlgpantumMPM estimate
M(T,,=0I">0) has another kind of advantage. As Fig. 3 ; . S .
indicates, the overlap of the quantum MPM estimate is al?re provided on the web sifdZ] as the original image, in-
most flat in comparison wittM(T,,=0.1I'>0) or M(T,, stead of the Ising snapshots. In order to sampAIe the important
—0.9I'>0). This is a desirable property from the practical Points that contribute to the local magnetizatierf), we use
point of view. This is because the estimation of the hyperpathe quantum Monte Carlo method that was proposed by Su-
rameters is one of the crucial problems in inferring the origi-zuki [8]. As we mentioned in the previous sections, we can
nal image, and in general it is difficult to estimate them be-treat thed-dimensional quantum system asdx{1) dimen-
forehand. Therefore, this robustness for hyperparametesional classical system by the Trotter decomposifi®h In
selection is a desirable property. We also see this property ithis sense, the transition probability of the Metropolis algo-
Fig. 3. rithm leads to

In this section, Monte Carlo simulations in realistic two
dimensions are carried out in order to check the practical
usefulness of our method. We use giandard pictureghat
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FIG. 3. The overlapM as a
function of the quantum fluctua-
tion I' and temperatur@,,.

P({o}—{o})=min(1l,exd —[E({o} ) —E{a}]}). that the quantum fluctuations suppress the error of the hyper-
(39 parameter’s estimation in the Markov random-field model. In

addition, by making use of the quantum Monte Carlo simu-

E({c}) is the energy of the classical spin systemdh-(1)  |ations, we could apply the method to the image restoration
dimensiongin the present case, (21)=3 dimensionfand  of two-dimensional standard pictures. However, in carrying

is given by out the simulations, it takes quite a long time to obtain the
B average(&f)hﬁmvr and this is not suitable for practical situ-
E({oh)=— ) 2 [0 kTi+1jkt Ti | kTi—1jK ations.
! In this section, in order to overcome this computational
h
+0 Lo +0 Lo - — T
0i,j,k0i,j+1k™ 0ij kOij 1,k] P ”Ek 7i,j0i,j,k M
0.87 L L L L

*B”Zk T j kO j k+1s (40) 0.86 -

0.85 -
where we defined=In cosh{’/P). The transition probabil-

ity Eqg. (39) with Eq. (40) generates the Boltzmann-Gibbs 0.84 -
distribution asymptotically and, using the importance sam-

pling from the distribution, we can calculate the expectation 083 7
value of theith spin o7, namely,(af)n 5 . Using this 0.82 1
result, we obtain an estimate of theh pixel of the original 081 4/
image as sgrE?)n, . r). We give the results in Figs. 5 and 08 4/

6. From these figures, we see that there exists an optimal
value of the transverse field. In Figs. 7 and 8, we display
the results of quantum Monte Carlo simulations when we  0.78 . T T T

0.79 4 =

add the parity check term for the parameter 4&ts2.0, h 0.5 1 1.5 2 25
=1.0, andB,=0.5. We see that the resultant pictures with ﬁJ
the parity check term are almost perf¢see 8;=1.0 and
1.5]. FIG. 4. The overlagM as a function of3; for several values of
I'. We set the system parametefs,=T;=0.9, 7=1,=1.0, J
V. MEAN-FIELD ALGORITHM =Jy=1.0, andh/B,=0.9=3./B. For the case of =0, the op-

) _ ~ timal g, is naturally identical taly/J?=1.0. As the quantum fluc-
In the previous sections, we see that quantum fluctuatioguationT" increases, the overldd decreases because the quantum
works effectively in image restoration problems in the sensédluctuation destroys the recovered image.
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Original

Damaged

FIG. 5. The results by quantum Monte Carlo
simulations for the standard pictufa Japanese
kanji stamp for the name of “Suzuki,” which is
the most popular name in Japan; the size is
50x50). From the upper left to the lower right,
the original picture, the damaged picture, and the
results forI'=0.2, 1.0, 1.7, 1.9, 2.1, and 2.7
are displayed. The noise rate is 10%%he over-
lap between the original picture and the damaged
one is 0.9.

time intractability, we derive an iterative algorithm based on Z; —e MNj(D) L g Nij(2), (43)
the mean-field approximation. This algorithm shows fast

convergence to the approximate solution. Within the meant, the above expressions, (n), n=1,2 means eigenvalues

field approximation, we rewrite the density matrix ¢+ ihe 2x2  matrix H. (A= HE AT
o et L . . . b R R ij ij 111 LT
e | Z for the two-dimensional version of the effective :Hi(j ), [Fi]=[Fila=—T), andHi(J-*) is defined by

HamiltonianHe as

H == (mj+Im®+ImO +Im, +Im) )

p=I1 ®p;. (42)
i N =—H{)=a, (44)
where we defineg;; as P
i J= r’“ =0.5. (45)
;’ijznzl o (n)ye i (o (n) (42)
Using this decoupled density matrix, the local magnetization
with at a site {,j), namely,m{{*", becomes
M Original Damaged
0.94 1 1 1 ._.. e e
R
0.92 - } RS I -

0.88 { L
0.86 L
0.84 -
0.82 L

=

0.8 T T T

I FIG. 7. The results by quantum Monte Carlo simulations includ-
ing the parity check term. We fixed=2.0, h=1.0, andB,,=0.5.
FIG. 6. The overlagM as a function of the quantum fluctuation From the upper left to the lower right, the original picture, the
I" for the standard picture in Fig. 5. We $84,=0.5, h=1.0, and damaged picture, and the results®f=0.01, 0.5, 1.0, and 1.5 are
P=50. The errorbars are calculated by averaging over five indepershown. The noise rate is 10%The overlap between the original
dent runs. picture and the damaged one is 0.9.
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FIG. 8. B; dependence of the overldp calculated by quantum
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TABLE I. The overlapM calculated by the quantum iterative
algorithm for several values df. The restored pictures are shown
in Fig. 9. The iteration times are also listed. We 3et0.5.

r M Iteration times
0.001 000 0.919 200 21
0.800 000 0.921 600 22
1.200 000 0.927 200 8
1.600 000 0.932 800 4
2.400 000 0.900 800 2
3.000 000 0.840 000 4

the appropriate quantum fluctuation, the performance is re-
markably improved, and in addition, the speed of the conver-
gence becomes much faster. However, if we add too much
quantum fluctuation, the fluctuation destroys the recovered
image. We also see that an optimal valud’oéxists around
r~1.6.

Monte Carlo simulations for the standard picture in Fig. 6. We set

Bm=0.5, h=1.0, andI"=2.0. The errorbars are calculated from
five independent runs.

mi(jHl):Tr[o'iijij]

@ [(a+ o+ T?)2-T?

2 costiVaZ+T2) | (a+ Ja?+T2)2+T2
R N i i el &
2 costiVa?+T?) | (a— e+ T2)2+12]|

(46)

For this local magnetizatio6), the estimate of the pixe;
is obtained as sgmy; |.

We solve the mean-field equatiof46) with respect to
m;; until the condition

ey =|mjj V-mP|<10°° (47)

holds for all pixels{i,j}. We show its performance in Fig. 9

VI. SUMMARY AND DISCUSSION

In this paper, we investigated to what extent quantum
fluctuation works effectively on image restoration. For
this purpose, we introduced an analytically solvable model,
that is, the infinite range version of the Markov random-field
model. We applied the techniques of statistical mechanics
to this model and derived the overlap explicitly. We found
that the quantum fluctuation improves the quality of the
image restoration dramatically in the low-temperature
region. In this sense, the error of the estimation for the hy-
perparameterg,,,h can be suppressed by the quantum fluc-
tuation.

However, we also found that the maximum value of the
overlap M {3ua"U™ hever exceeds that of the classical Ising
caseM "®™Ma) \We may show this fact by the following ar-
guments. First of all, the upper bound of the overlap for the
classical system is given by settihg= 3, andP,=P,,, that

and Table I. From Table I, we see that, if we introduceis,

MEema B P =Tr;, & exp( B> TiEi)P({E})sg'{Trg o eXp( B> riai)PmGa})

ZTI’{T’g}gi EXF( ,87—2 T §|) P({f})

=Tr,

Tr(, (o EX[{ ETE T O
|

Tryo eXP(/BTEi TiUi)Pm({U})

Tr, o ex;{ B> TiUi) Pn({o})

Pm({a})’- (48)

For the quantum system, the overlap is bounded by this maximum w§E™ as
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Original Damaged I' =0.001 I'=0.8

FIG. 9. The restored picturegheir size is
50x50) obtained with the quantum iterative al-
gorithm for several values df. From the upper
left to the lower right, the original image, the
corrupted image, the results of I’
=0.001,0.8,1.2,1.6,2.0, and=3.0. The noise
rate is 20%.(The overlap between the original
picture and the damaged one is 0.8.

M(quamum(hlpm ) ZTF{Tyg} & EXF< ’37_2 Tifi) P({g})sgr{Tr; 2)'|z EX[{ hz Ti E},Z+ FZ (}7(> Pm(&z)

=

(o6 X 6.5 ria)m{f})sg{Tr;&%exp(hE T 5Pl

=Tr|Tr: & exp( B.2 7 §i> P({&h)| =M {hermaD, (49)

We can see this inequality more directly as follows:

Tr;,?rizexp( hY, rof+TY, &’})Pm({frz})

Tr,

Tre & exp( B> Tifi) PUEN|=Trq & exp( B2 7 a) P&}
' ! Tr;,?rizexp( hE ri(}iz+l“z &’;)Pm({&z})‘

=Tr,a & exp(BTZ Ti§i>P({§})ng{Tr;3feXP(h2 rot+T Y &Xi)PmG&Z})

— M(quantum(hlpm,r), (50)

where the identity sgix) = x/|x| was used. We should notice maximize amarginal likelihood By making use of the infi-
that in the left-hand side of the above inequali0), the  nite range model, the usefulness of this method can be evalu-
arguments of the trace with respecti@lways take positive ated. The details of the analysis will be reported in a forth-
values, while in the right-hand side they can be negative. coming paper. Of course, the application of this strategy to
In order to check the usefulness of the method, we carriethe restoration of gray-scaled imadéds,14] will be consid-
out quantum Monte Carlo simulations in realistic two dimen-ered as an important future problem.
sions. We found that the results of the simulation support
qualitative behavior of the analytical expressions for overlap.
We introduced an iterative algorithm in terms of the
mean-field approximation and applied it to image restoration
of standard pictures. We found that the quantum fluctuations
suppress the error in the hyperparameter estimation. In addi-
tion, we found that the speed of the convergence to the so- The author acknowledges H. Nishimori for fruitful discus-
lution is accelerated by the quantum fluctuations. sions and useful comments. He also thanks K. Tanaka for a
From all the results obtained in this paper, we concludekind tutorial on the theory of image restoration and drawing
that the quantum fluctuation turns out to enhance tolerance dfis attention to Ref{4]. He acknowledges D. Bolle’, A. C.
uncertainties in hyperparameter estimation. However, ifC. Coolen, D. M. Carlucci, T. Horiguchi, P. Sollich, and K.
much higher quality of restoration is required, we must esti-Y. M. Wong for valuable discussions. The author thanks the
mate those parameters using some method. One strategy foepartment of Physics, Tokyo Institute of Technology and
this purpose is selecting the parametgrs, h, andI’ that  the Department of Mathematics, Kings College, University
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