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Application of the quantum spin glass theory to image restoration
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Quantum fluctuation is introduced into the Markov random-field model for image restoration in the context
of a Bayesian approach. We investigate the dependence of the quantum fluctuation on the quality of a black
and white image restoration by making use of statistical mechanics. We find that the maximum posterior
marginal ~MPM! estimate based on the quantum fluctuation gives a fine restoration in comparison with the
maximuma posterioriestimate or the thermal fluctuation based MPM estimate.
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I. INTRODUCTION

Recently, the problems of information science have b
investigated from a statistical mechanical point of view. I
age restoration is one of the most suitable subjects for
approach. In the standard approach to image restoration
estimate of the original image is given by maximizinga
posterioriprobability distribution~the MAP estimate! @1#. In
the context of statistical mechanics, this approach co
sponds to finding the ground-state configuration of the eff
tive Hamiltonian for some spin system under random fiel
On the other hand, it is possible to construct another stra
to infer the original image using the thermal equilibriu
state of the Hamiltonian. From the Bayesian statistical po
of view, the finite temperature restorationcoincides with
maximizing a posterior marginal distribution~the MPM es-
timate @2,3#! and by using this strategy the error for ea
pixel may become smaller than that of the MAP estimate.
we use the average of each pixel~spin! over the Boltzmann-
Gibbs distribution at a specific temperature, thermal fluct
tion should play an important role in the MPM estima
Then the temperature controls the shape of the distribu
and, if we choose the temperature appropriately, samp
from the distribution generates the important configuratio
for a good restoration. In addition to this hill-climbin
mechanism by the thermal fluctuation, we may use ano
type of fluctuation, namely, the quantum fluctuation th
leads to quantum tunneling between states. If we use s
pling from the Boltzmann-Gibbs distribution based on qua
tum fluctuation, it may be possible to obtain much mo
effective configurations for a good restoration. The idea
the Markov random-field model using quantum fluctuati
was recently proposed by Tanaka and Horiguchi@4#; how-
ever, they investigated the quantum fluctuation in the con
of optimization~the MAP estimate by quantum fluctuation!
and they used the ground state as the estimate of the ori
image. We would like to stress that we use a distribut
based on the quantum fluctuation itself and the expecta
value is used to infer the original image. It is a highly no
trivial problem to investigate whether the MPM estima
based on quantum fluctuation is better than the MAP e
mate or the thermal fluctuation based MPM estimate. Thi
the essential concept of this paper.

This paper is organized as follows. In Sec. II, we expla
our model system and the essential idea of our metho
1063-651X/2001/63~4!/046114~10!/$20.00 63 0461
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detail. We also introduce the criterion of the restoration, t
is, the overlap between the original image and the resul
the restoration. In Sec. III, we introduce the infinite ran
model in order to obtain analytical results for the perfo
mance of the restoration, and calculate the overlap explic
In Sec. IV, we show that quantum Monte Carlo simulatio
in two dimensions support our analytical results. In Sec.
we introduce an iterative algorithm which is derived by t
mean-field approximation and apply this algorithm to ima
restoration for standard pictures. Section VI is devoted
discussion of all results we obtain. In this section, we a
mention the inequality that gives the upper bound of
overlap.

II. ESSENTIAL IDEA AND FORMULATION

Let us suppose that the original image is represented b
configuration of Ising spins$j%[$j i uj i561;i 51, . . . ,N%
with probability Ps($j%). These images are sent through t
noisy channel in the form of the sequence$j%. We regard the
output of the sequence$j% through the noisy channel as$t%.
The output probability for the case of a binary symmet
channel~BSC! is specified by

Pout~$t%u$j%!5
1

~2 coshbt!
N

expS bt(
i

t ij i D . ~1!

We understand the relevance of this expression for the B
let us suppose that each pixelj i changes its sign with prob
ability pt and remains with 12pt during the transmission
that is,

P~t i52j i uj i !5pt[
e2bt

2 coshbt
~2!

P~t i5j i uj i !512pt[
ebt

2 coshbt
. ~3!

We easily see that there is a simple relation between
probability pt and inverse temperaturebt as exp(2bt)
5(12pt)/pt . This is the reason why we refer to this type
noise asbinary symmetricchannel. Using the assumptio
that each pixelj i in the original image$j% is corrupted
independently ~so-called memory-less channel! namely,
©2001 The American Physical Society14-1
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JUN-ICHI INOUE PHYSICAL REVIEW E 63 046114
P($t%u$j%)5) i P(t i uj i), we obtain Eq.~1!. This BSC is
simply extended to the following Gaussian channel~GC!

Pout~$t%u$j%!5
1

~A2pt!N
expS 2

1

2t2 (
i

~t i2t0j i !
2D ,

~4!

where t is a standard deviation of observable~corrupted
pixel! t i from scaled original pixelt0j i .

Then the posterior probabilityP($s%u$t%), which is the
probability that the source sequence is$s% provided that the
output is$t%, leads to

P~$s%u$t%!5
P~$t%u$s%!Pm~$s%!

(
s

P~$t%u$s%!Pm~$s%!

~5!

by the Bayes theorem. As we treat a black or white ima
and the BSC~1!, a likelihood P($t%u$j%) is appropriately
written by

P~$t%u$j%!; expS h(
i

t is i D . ~6!

Pm($s%) appearing in the Bayesian formula~5! is a model of
the prior distributionPs($j%), and we usually use the type

Pm~$s%!; expS bm(̂
i j &

s is j D ; ~7!

where(^ i j &(•••) means the sum with respect to the neare
neighboring pixels andbm controls the smoothness of th
picture according to our assumption. Substituting Eqs.~6!
and ~22! into Eq. ~8!, we obtain the posterior probabilit
P($s%u$t%) explicitly;

P~$s%u$t%!5

expS bm(̂
i j &

s is j1h(
i

t is i D
(
s

expS bm(̂
i j &

s is j1h(
i

t is i D . ~8!

In the framework of the MAP estimate, we regard a config
ration $s% that maximizes the posterior probabilit
P($s%u$t%) as an estimate of the original image$j%. Obvi-
ously, this estimate$s% corresponds to the ground state
the following effective Hamiltonian~the random-field Ising
model!:

Heff52bm(̂
i j &

s is j2h(
i

t is i . ~9!

Therefore, in the limit ofbm /h→`, we expect that the origi-
nal image should be a completely black or completely wh
picture, whereas in the limit ofbm /h→0, we assume tha
the original image should be identical to the observable$t%
itself.
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On the other hand, in the framework of the MPM es
mate, we maximize the following posterior marginal pro
ability

P~s i u$t%!5

(
sÞs i

P~$t%u$s%!Pm~$s%!

(
s

P~$t%u$s%!Pm~$s%!

. ~10!

As we treat the case of black or white image, the estimate
the i th pixel should be given by

sgnF (
s i561

s i P~s i u$t%!G
5sgnS (

s
s i P~$t%u$s%!Pm~$s%!

(
s

P~$t%u$s%!Pm~$s%!
D

[sgn~^s i&h,bm
!; ~11!

where^•••&h,bm
means the average over the posterior pro

ability Eq. ~8!. Consequently, our problem is reduced to o
of statistical mechanics that is described by the effect
Hamiltonian Eq.~9!. As the Hamiltonian Eq.~9! has many
local minima due to the quenched disorder$t%, in general, it
is quite difficult to obtain the thermal equilibrium state th
contributes to good restoration without being trapped in
local minimum for a long time. In order to overcome th
difficulty, we add thequantum transverse field@5#

2G(
i

ŝ i
x[Ĥ1 ~12!

to the effective Hamiltonian~9! as aquantum fluctuation. In
this expression,ŝ i

x means thex component of the Pauli ma
trix andG controls the width of the quantum fluctuation. Th
term Gŝ i

x can be understood intuitively as thetunneling

probability between the eigenstates of the operatorŝ i
z (z

component of the Pauli matrix! namely,us i
z561&. The tun-

neling probability between the statesus i
z561& leads to

u^s i
z511uGŝ i

xus i
z521&u25G2. As a result, the term~12!

generates a superposition of the statesus i
z511& ~black! and

us i
z521& ~white!. Using this fuzzyrepresentation for each

pixel, we may construct an algorithm that is robust for t
choice of the hyperparameters, especially for the edge p
of a given picture.

Our problem is now reduced to one of quantum statisti
mechanics for the effective Hamiltonian

Ĥeff52h(
i

t i ŝ i
z2bm(̂

i j &
ŝ i

zŝ j
z2G(

i
ŝ i

x[Ĥ01Ĥ1 ,

~13!
4-2
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APPLICATION OF THE QUANTUM SPIN GLASS . . . PHYSICAL REVIEW E 63 046114
where we definedĤ1[Ĥeff2Ĥ0. Our main goal is to calcu-
late the local magnetization̂ŝ i

z&h,bm ,G of the system de-
scribed by the above Hamiltonian, that is to say,

^ŝ i
z&h,bm ,G[

Trs ŝ i
z exp~2Ĥeff!

Trs exp~2Ĥeff!
~14!

and we regard the quantity sgn(^ŝ i
z&h,bm ,G) as an estimate o

the original pixelj i . Therefore, the averaged performance
our method is measured by the overlapM (h,bm ,G)

M ~h,bm ,G!

5Tr$j,t% Ps~$j%!Pout~$t%u$j%!j i sgn~^ŝ i
z&h,bm ,G!.

~15!

Thus, our main interests are summarized as follows.~i! Is it
possible for us to use the quantum fluctuation in place of
thermal one?~ii ! Does there exist a specific choice ofG that
gives optimal image restoration?

Before we calculate the overlap~15!, we may add the
parity check term, which was recently introduced by Nish
mori and Wong@6#, to the effective Hamiltonian~9!. This
parity check term is represented asbJ(^ i j &Ji j ŝ i

zŝ j
z , and we

rewrite Ĥ0 as

Ĥ052bJ(̂
i j &

Ji j ŝ i
zŝ j

z2bm(̂
i j &

ŝ i
zŝ j

z2h(
i

t i ŝ i
z , ~16!

whereJi j is the noisy version of the product of two arbitra
original pixelsj ij j and the output of this quantity throug
the noisy channel is given by

Pout~$J%u$j%!5
1

~2 coshb r !
NB

expS b r(̂
i j &

Ji j j ij j D ~17!

for the BSC and

Pout~$J%u$j%!5
1

~A2pJ!NB
expS 2

1

2J2 (̂
i j &

~Ji j 2J0j ij j !
2D
~18!

for the GC, respectively.NB is the number of the terms ap
pearing in the sum in Eq.~17! or Eq.~18!. Thus the effective
Hamiltonian Ĥeff5Ĥ01Ĥ1 describes the thermodynamic
of a quantum spin glass@5,7# under random fields.

In the next section, we introduce a rather artificial mod
namely, the infinite range model, in which spins in the s
tem ~13! are fully connected.

III. THE INFINITE RANGE MODEL

In this section, we calculate the overlap~15! explicitly
using the infinite range version of the effective Hamiltoni
~13!. We use the GC for the analysis of the infinite ran
model in this section and the BSC for the quantum Mo
Carlo simulations in Sec. IV. However, these two chann
04611
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can be treated with the single form

Pout~$J%u$t%!5)̂
i j &

Fr~Ji j !)̂
i j &

F1~t i j !

3expS b r(̂
i j &

Ji j j ij j1bt(
i

t ij i D ~19!

with

Fr~Ji j !5
1

2 coshb r
$d~Ji j 21!1d~Ji j 11!%,

F1~t i j !5
1

2 coshbt
$d~t i21!1d~t i11!% ~20!

for the BSC and

Fr~Ji j !5
1

A2pJ2
expS 2

1

2J2
~Ji j

2 1J0
2!D ,

F1~t i !5
1

A2pt2
expS 2

1

2t2
~t i

21t0
2!D , ~21!

for the GC, and we setbJ5J0 /J2 andbt5t0 /t2.
As the original image, we use the ferromagnetic snaps

from the distribution

Ps~$j%!5
1

Z~bs!
expS bs

N (
i j

j ij j D , ~22!

where ( i j (•••) means the sum over all possible combin
tions of (i , j ) and we divided the argument of the exponent
in Eq. ~22! by N to take a proper thermodynamic limit as th
Hamiltonian should be of orderN. For the same reason
we should rescale the terms appearing in Eq.~13!

as bJ(^ i j &Ji j ŝ i
zŝ j

z→(bJ /N)( i j Ji j ŝ i
zŝ j

z and bm(^ i j &ŝ i
zŝ j

z

→(bm /N)( i j ŝ i
zŝ j

z when we treat the infinite range model

It must be noted thatĤ0 and Ĥ1 do not commute with
each other and we use the Trotter decomposition@8#

Z5 lim
P→`

Trsz~e2bH0 /Pe2bH1 /P!P ~23!

to calculate the partition function explicitly. In this formula
H0 andH1 are eigenvalues of the operatorsĤ0 andĤ1 with
respect to the eigenvector

u$sk
z%&5)

i 51

N

^ us ik
z & ~k51, . . . ,P! ~24!

with

ŝ ik
z us ik

z &[s ikus ik
z &. ~25!

P means the Trotter number and we distinguish the differ
Trotter slices by the indicesk.
4-3
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JUN-ICHI INOUE PHYSICAL REVIEW E 63 046114
Now we can calculate the partition function for the qua
tum spin system~16! in terms of the corresponding classic
spin system whose dimension increases by 1. Using the T
ter formula~the path-integral formula! and well-known rep-
lica method@9#, namely,

@ ln Z#5 lim
n→`

@Z n#21

n
, ~26!
b

pl

, i

04611
-
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we can obtain the overlap as a function of the macrosco
parametersbm and G by making use of the saddle-poin
method. The bracket@•••# denotes the average over the d
tribution Ps($j%)Pout($J%,$t%u$j%).

The standard replica calculations and saddle-point met
lead to the following coupled equations:
@j i #5m05tanh~b0m0!, ~27!

@^s iK
a &h,bm ,G#5m5

Trj ebsm0j

2 cosh~bsm0!
E

2`

`

Du V21E
2`

`

Dv Fy21 sinhy, ~28!

@j i^s iK
a &h,bm ,G#5t

5
Trj ebsm0j

2 cosh~bsm0!
E

2`

`

Du V21E
2`

`

Dv jFy21 sinhy; ~29!

@^~s iK
a !2&h,bm ,G#5Q5

Trj ebsm0j

2 cosh~bsm0!
E

2`

`

DuFV21E
2`

`

Dv Fy21 sinhyG2

, ~30!

@^s iK
a s iL

a &h,bm ,G#5S5
Trj ebsm0j

2 cosh~bsm0!
E

2`

`

Du V21F E
2`

`

Dv F2y22 coshy1G2E
2`

`

Dv y23 sinhyG , ~31!
rom

ng

the

ant
pro
where^•••&h,bm ,G means the average by the posterior pro

ability using the same method as Eq.~14!. Du or Dy means
Gaussian integral measureDu[du e2u2/2/A2p. In order to
obtain the above saddle-point equations, we used the re
symmetric and the static approximations, that is,

tK5t, ~32!

Sa~KL !5S~KÞL !, 1~K5L !, ~33!

Qab5Q. ~34!

We also defined the functionsF, y, andV as

F[uA~th!21Q~JbJ!
21JbvAS2Q1~t0h1J0bJt !j

1bmm, ~35!

y[AF21G2, ~36!

V[E
2`

`

Dv coshy. ~37!

Then the overlap, which is a measure of retrieval quality
calculated explicitly as
-

ica

s

@j i sgn~^s iK
a &h,bd ,G!#5M5

Trj jebsm0j

2 cosh~bsm0!
E

2`

`

DuE
2`

`

Dw

3sgn@uA~th!21Q~JbJ!
2

1~t0h1J0bJt !j1bmm

1JbJwAS2Q#, ~38!

where the above overlapM depends onG through m @Eq.
~28!#.

We first consider the case ofbJ50, that is to say, the
conventional image restoration. We choose a snapshot f
the distribution~22! at source temperatureTs50.9. Accord-
ing to Nishimori and Wong@6#, we fix the ratioh/bm and
adjust bm(51/Tm) as a parameter for simulated anneali
@10# and controlG as a quantum fluctuation. If we setG
50, the lines ofM (Tm ,G50) should be identical to the
results obtained by thethermal MPM estimate@6#. On the
other hand, if we chooseTm50 andG50, the resultant line
M (Tm50,G) represents the performance of thequantum
MAP estimate. We should draw attention to the fact that
quantum fluctuation vanishes atG50. In practical applica-
tions of the quantum annealing@11# based on quantum
Monte Carlo simulations, we should reduceG from G.0 to
G50 during Monte Carlo updates. However, the result
performance obtained here is calculated analytically
4-4
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APPLICATION OF THE QUANTUM SPIN GLASS . . . PHYSICAL REVIEW E 63 046114
vided that the system reaches its equilibrium state. Th
fore, we can regard the resultM (Tm50,G50) as a perfor-
mance whenG is decreased slowly enough.

In Fig. 1, we set the ratioh/bm to its optimal value
bt /bs50.9 and plot the overlapM (Tm ,G) for the cases of
G50, 0.5, and 1.0. Obviously, for the case ofG50, the
maximum is obtained at a specific temperatureTm50.9
(5Ts) @6#. However, if we add a finite quantum fluctuatio
the optimal temperatureTm is shifted to the low-temperatur
region.

In Fig. 2, we plot M (Tm ,G) for the cases ofTm
50,0.1,0.9 with the fixed optimal ratioh/bm50.9. This fig-
ure shows that if we set the parametersh,bm to their optimal
value in the thermal MPM estimate, the quantum fluctuat
added to the system destroys the recovered image@see the
linesM (Tm ,G) for the case ofTm50.9#. Therefore, we may
say that it is impossible to choose all parametersh, bm , and
G so as to obtain an overlap that is larger thanMmax
[M(Tm50.9,G50). This fact is also shown by a three
dimensional plotM (Tm ,G) in Fig. 3.

Although, we found that a finiteG does not give the ab
solute maximum of the overlap, thequantumMPM estimate
M (Tm50,G.0) has another kind of advantage. As Fig.
indicates, the overlap of the quantum MPM estimate is
most flat in comparison withM (Tm50.1,G.0) or M (Tm
50.9,G.0). This is a desirable property from the practic
point of view. This is because the estimation of the hyper
rameters is one of the crucial problems in inferring the ori
nal image, and in general it is difficult to estimate them b
forehand. Therefore, this robustness for hyperparam
selection is a desirable property. We also see this proper
Fig. 3.

FIG. 1. The overlapM as a function ofTm for several values of
G. We set the system parameters asTs50.9, t05t51.0, and
h/bm50.95bt /bs . For G50, the optimal temperatureTm coin-
cides with the source temperatureTs50.9. As the quantum fluctua
tion G increases, the optimal temperature is shifted to the lo
temperature region. However, the maximum value of the ove
does not change.
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As we already mentioned, the overlap atTm50 and
G50 corresponds to the result that is obtained by qu
tum annealing@11#, that is to say, the quantum MAP
estimate. We see that the result of the quantum MPM e
mate is slightly better than that of the quantum MA
estimate.

We next show the effect of the parity check term. In F
4, we setTm5Ts50.9, h51.0, andJ05J51.0 and plot the
overlap as a function ofbJ for several values ofG. We see
that the performance of the restoration is improved by int
ducing the parity check term, which has much informati
about the local structure of the original image.

In the next section, we check the usefulness of t
method in terms of quantum Monte Carlo simulation.

IV. QUANTUM MONTE CARLO SIMULATION

In this section, Monte Carlo simulations in realistic tw
dimensions are carried out in order to check the pract
usefulness of our method. We use thestandard picturesthat
are provided on the web site@12# as the original image, in-
stead of the Ising snapshots. In order to sample the impor

points that contribute to the local magnetization^ŝ i
z&, we use

the quantum Monte Carlo method that was proposed by
zuki @8#. As we mentioned in the previous sections, we c
treat thed-dimensional quantum system as a (d11) dimen-
sional classical system by the Trotter decomposition@8#. In
this sense, the transition probability of the Metropolis alg
rithm leads to

-
p

FIG. 2. The overlapM as a function ofG for several values of
Tm . We set the system parameters asTs50.9, t05t51.0, and
h/bm50.95bt /bs . The overlap atTm50 andG50 corresponds
to the result obtained by quantum annealing. The quantum M
estimate works effectively in the low-temperature region and
results are robust for the choice ofG.
4-5
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FIG. 3. The overlapM as a
function of the quantum fluctua
tion G and temperatureTm .
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P~$s%→$s%8!5min~1,exp$2@E~$s%8!2E~$s%!#%!.
~39!

E($s%) is the energy of the classical spin system in (d11)
dimensions@in the present case, (211)53 dimensions# and
is given by

E~$s%![2
bm

P (
i jk

@s i , j ,ks i 11,j ,k1s i , j ,ks i 21,j ,k

1s i , j ,ks i , j 11,k1s i , j ,ks i , j 21,k#2
h

P (
i jk

t i , js i , j ,k

2B(
i jk

s i , j ,ks i , j ,k11 , ~40!

where we definedB[ ln cosh(G/P). The transition probabil-
ity Eq. ~39! with Eq. ~40! generates the Boltzmann-Gibb
distribution asymptotically and, using the importance sa
pling from the distribution, we can calculate the expectat
value of the i th spin ŝ i

z , namely, ^ŝ i
z&h,bm ,G . Using this

result, we obtain an estimate of thei th pixel of the original
image as sgn(^ŝ i

z&h,bm ,G). We give the results in Figs. 5 an
6. From these figures, we see that there exists an opt
value of the transverse fieldG. In Figs. 7 and 8, we display
the results of quantum Monte Carlo simulations when
add the parity check term for the parameter setsG52.0, h
51.0, andbm50.5. We see that the resultant pictures w
the parity check term are almost perfect@seebJ51.0 and
1.5#.

V. MEAN-FIELD ALGORITHM

In the previous sections, we see that quantum fluctua
works effectively in image restoration problems in the se
04611
-
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that the quantum fluctuations suppress the error of the hy
parameter’s estimation in the Markov random-field model.
addition, by making use of the quantum Monte Carlo sim
lations, we could apply the method to the image restorat
of two-dimensional standard pictures. However, in carry
out the simulations, it takes quite a long time to obtain t
averagê ŝ i

z&h,bm ,G and this is not suitable for practical situ
ations.

In this section, in order to overcome this computation

FIG. 4. The overlapM as a function ofbJ for several values of
G. We set the system parametersTm5Ts50.9, t5t051.0, J
5J051.0, andh/bm50.95bt /bs . For the case ofG50, the op-
timal bJ is naturally identical toJ0 /J251.0. As the quantum fluc-
tuationG increases, the overlapM decreases because the quantu
fluctuation destroys the recovered image.
4-6
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FIG. 5. The results by quantum Monte Car
simulations for the standard picture~a Japanese
kanji stamp for the name of ‘‘Suzuki,’’ which is
the most popular name in Japan; the size
50350). From the upper left to the lower righ
the original picture, the damaged picture, and t
results for G50.2, 1.0, 1.7, 1.9, 2.1, and 2.
are displayed. The noise rate is 10%.~The over-
lap between the original picture and the damag
one is 0.9.!
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time intractability, we derive an iterative algorithm based
the mean-field approximation. This algorithm shows f
convergence to the approximate solution. Within the me
field approximation, we rewrite the density matrixr̂
5e2Ĥeff/Z for the two-dimensional version of the effectiv
HamiltonianĤeff as

r̂.)
i j

^ r̂ i j , ~41!

where we definedr̂ i j as

r̂ i j 5 (
n51

2

us i j ~n!&e2l i j (n)^s i j ~n!u ~42!

with

FIG. 6. The overlapM as a function of the quantum fluctuatio
G for the standard picture in Fig. 5. We setbm50.5, h51.0, and
P550. The errorbars are calculated by averaging over five inde
dent runs.
04611
t
-

Zi j 5e2l i j (1)1e2l i j (2). ~43!

In the above expressions,l i j (n), n51,2 means eigenvalue
of the 232 matrix Ĥ i j (@Ĥ i j #115Hi j

(1) ,@Ĥ i j #22

5Hi j
(2) , @Ĥ i j #125@Ĥ i j #2152G), andHi j

(6) is defined by

Hi j
(1)52~t i j 1Jmi 11,j

(t) 1Jmi 21,j
(t) 1Jmi , j 11

(t) 1Jmi , j 21
(t) !

52Hi j
(2)[a, ~44!

J[
bm

h
50.5. ~45!

Using this decoupled density matrix, the local magnetizat
at a site (i , j ), namely,mi j

(t11) , becomes

n-

FIG. 7. The results by quantum Monte Carlo simulations inclu
ing the parity check term. We fixedG52.0, h51.0, andbm50.5.
From the upper left to the lower right, the original picture, t
damaged picture, and the results ofbJ50.01, 0.5, 1.0, and 1.5 are
shown. The noise rate is 10%.~The overlap between the origina
picture and the damaged one is 0.9.!
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mi j
(t11)5Tr@s i j

z r̂ i j #

5
eAa21G2

2 cosh~Aa21G2!
F ~a1Aa21G2!22G2

~a1Aa21G2!21G2G
1

e2Aa21G2

2 cosh~Aa21G2!
F ~a2Aa21G2!22G2

~a2Aa21G2!21G2G .

~46!

For this local magnetization~46!, the estimate of the pixelj i j
is obtained as sgn@mi j #.

We solve the mean-field equations~46! with respect to
mi j until the condition

« i j [umi j
(t11)2mi j

(t)u,1025 ~47!

holds for all pixels$ i , j %. We show its performance in Fig.
and Table I. From Table I, we see that, if we introdu

FIG. 8. bJ dependence of the overlapM calculated by quantum
Monte Carlo simulations for the standard picture in Fig. 6. We
bm50.5, h51.0, andG52.0. The errorbars are calculated fro
five independent runs.
04611
the appropriate quantum fluctuation, the performance is
markably improved, and in addition, the speed of the conv
gence becomes much faster. However, if we add too m
quantum fluctuation, the fluctuation destroys the recove
image. We also see that an optimal value ofG exists around
G;1.6.

VI. SUMMARY AND DISCUSSION

In this paper, we investigated to what extent quant
fluctuation works effectively on image restoration. F
this purpose, we introduced an analytically solvable mod
that is, the infinite range version of the Markov random-fie
model. We applied the techniques of statistical mechan
to this model and derived the overlap explicitly. We foun
that the quantum fluctuation improves the quality of t
image restoration dramatically in the low-temperatu
region. In this sense, the error of the estimation for the
perparametersbm ,h can be suppressed by the quantum flu
tuation.

However, we also found that the maximum value of t
overlapMmax

( quantum) never exceeds that of the classical Isi
caseMmax

(thermal). We may show this fact by the following ar
guments. First of all, the upper bound of the overlap for
classical system is given by settingh5bt andPs5Pm , that
is,

t

TABLE I. The overlapM calculated by the quantum iterativ
algorithm for several values ofG. The restored pictures are show
in Fig. 9. The iteration times are also listed. We setJ50.5.

G M Iteration times

0.001 000 0.919 200 21
0.800 000 0.921 600 22
1.200 000 0.927 200 8
1.600 000 0.932 800 4
2.400 000 0.900 800 2
3.000 000 0.840 000 4
Mmax
(thermal)~bt ,Ps!5Tr$t,j%j i expS bt(

i
t ij i D P~$j%!sgnFTrs s i expS bt(

i
t is i D Pm~$s%!G

5Tr$t,j%j i expS bt(
i

t ij i D P~$j%!

Trss i expS bt(
i

t is i D Pm~$s%!

UTrs s i expS bt(
i

t is i D Pm~$s%!U
5TrtUTrs s i expS bt(

i
t is i D Pm~$s%!U. ~48!

For the quantum system, the overlap is bounded by this maximum valueMmax
( thermal) as
4-8
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M (quantum)~h,Pm ,G!5Tr$t,j% j i expS bt(
i

t ij i D P~$j%!sgnFTrŝ ŝ i
z expS h(

i
t i ŝ i

z1G(
i

ŝ i
xD Pm~ ŝz!G

<UTr$t,j%j i expS bt(
i

t ij i D P~$j%!sgnFTrŝ ŝ i
z expS h(

i
t i ŝ i

z1G(
i

ŝ i
x D Pm~$ŝ i

z%!GU
5TrtUTrj j i expS bt(

i
t ij i D P~$j%!U5Mmax

(thermal). ~49!

We can see this inequality more directly as follows:

TrtUTrj j i expS bt(
i

t ij i D P~$j%!U>Tr$t,j% j i expS bt(
i

t ij i D P~$j%!

Trŝ ŝ i
z expS h(

i
t i ŝ i

z1G(
i

ŝ i
x D Pm~$ŝz%!

UTrŝ ŝ i
z expS h(

i
t i ŝ i

z1G(
i

ŝ i
x D Pm~$ŝz%!U

5Tr$t,j% j i expS bt(
i

t ij i D P~$j%!sgnFTrŝ ŝ i
z expS h(

i
t i ŝ i

z1G(
i

ŝ i
x D Pm~$ŝz%!G

5M (quantum)~h,Pm ,G!, ~50!

FIG. 9. The restored pictures~their size is
50350) obtained with the quantum iterative a
gorithm for several values ofG. From the upper
left to the lower right, the original image, th
corrupted image, the results of G
50.001,0.8,1.2,1.6,2.0, andG53.0. The noise
rate is 20%.~The overlap between the origina
picture and the damaged one is 0.8.!
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where the identity sgn(x)5x/uxu was used. We should notic
that in the left-hand side of the above inequality~50!, the
arguments of the trace with respect tot always take positive
values, while in the right-hand side they can be negative

In order to check the usefulness of the method, we car
out quantum Monte Carlo simulations in realistic two dime
sions. We found that the results of the simulation supp
qualitative behavior of the analytical expressions for overl

We introduced an iterative algorithm in terms of th
mean-field approximation and applied it to image restorat
of standard pictures. We found that the quantum fluctuati
suppress the error in the hyperparameter estimation. In a
tion, we found that the speed of the convergence to the
lution is accelerated by the quantum fluctuations.

From all the results obtained in this paper, we conclu
that the quantum fluctuation turns out to enhance toleranc
uncertainties in hyperparameter estimation. However,
much higher quality of restoration is required, we must e
mate those parameters using some method. One strateg
this purpose is selecting the parametersbm , h, andG that
04611
d
-
rt
.

n
s

di-
o-

e
of
if
i-
for

maximize amarginal likelihood. By making use of the infi-
nite range model, the usefulness of this method can be ev
ated. The details of the analysis will be reported in a for
coming paper. Of course, the application of this strategy
the restoration of gray-scaled images@13,14# will be consid-
ered as an important future problem.
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